
DESCRIPTION

The MS3120 is a terminal block type CT transmitter that calculates the rms values of AC current signals from a CT, converts them into commonly used DC signals, and provides an isolated dual output.

ORDERING CODE

Output 2

The codes are the same as for Output 1.

Note 1: When a voltage output is selected for Output 1, a current output cannot be selected for Output 2.

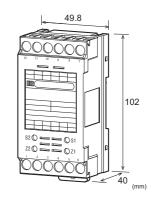
Note 2: When the code A (4 to 20mA) is selected for both of the two outputs, the output load will be 550Ω maximum for Output 1 and 350Ω maximum for Output 2.

Options

No code: None /X: Special order

* For non-standard options, ask MTT for availability.

ORDERING INFORMATION


To place an order, please use the ordering code format as shown above.

(e.g.) MS3120-A-5A6

Other Ordering Examples:

For an output code of "0": MS3120-A-160 (Output: 2 to 5V) For an option code of "X": MS3120-A-1AA/X (0-90%

response time: 100ms max.)

●POWER SEC	TION		
Power	100 to 240V	AC: 85 to 26	64V AC (47
Requirements	to 63Hz)		
	24V DC: 24	V DC±10%	
	110V DC: 90	0 to 121V DO	2
Power Sensitivity	Better than ±	=0.1% of spar	1 for each
	power supply	y range.	
Power Line Fuse	160mA fuse		
Maximum Power	Consumption		
Power 1	100-240V AC	24V DC	110V DC
	Approx.	Approx.	Approx.
	6.5VA	1.6W	2.5W

OINPUT SECTION

Input Resistance	5A AC input: $2m\Omega$ (Shunt resistor)
	$1AAC$ input: $10m\Omega$ (Shunt resistor)
Allowable Input	Continuous: 120% of the rated input
Current	value
	Instantaneous: 10 times the rated
	input value (within 3 seconds)
Crest Factor	3 max.

OUTPUT SEC	TION	
Allowable Output L	_oad	
Voltage Output	1V span and up	2mA max.
(DC)	10mV	$10k\Omega$ min.
	100mV	$100k\Omega$ min.
Current Output	4-20mA single output	750Ω max.
(DC)	4-20mA dual output	Output 1:
		550Ω max.
		Output 2:
		350Ω max.
Zero Adjustment	Approx. ±5% of span.	
	(Adjustable by the front	-accessible
	trimmer.)	
Span Adjustment	Approx. ±5% of span.	•
	(Adjustable by the front	-accessible
	trimmer.)	

Ranges Available		
	Current Signal	Voltage Signal
Output Range (DC)	0 to 20mA	-10 to 10V
Output Span (DC)	4 to 20mA	10mV to 20V
Output Bias	0 to 100%	-100 to 100%

* For current output signals, the accuracy of any current output smaller than 0.1mA is not guaranteed.

Output Spec. Ex.1: For 4 to 20mA output, the output span is 16mA and the bias +25%.

Output Spec. Ex. 2: For -1 to 4V output, the output span is 5V and the bias -20%.

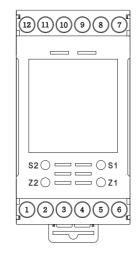
■ PERFORMANCE

PERFORMAN	ICE	
Accuracy Rating	Better than $\pm 0.25\%$ of span with at	
	least 10% input (at 25°C±5°C).	
Temperature	Better than ±0.2% of span per 10°C	
Effect	change in ambient.	
Response Time	400ms max. (0 to 90%) with a step	
	input at 100%.	
CMRR	100dB min. (500V AC, 50/60Hz)	
Isolation	5-way isolation between input, output	
	1, output 2, power, and ground.	
Insulation	$100 \mathrm{M}\Omega$ min. (@ 500V DC) between	
Resistance	input, output 1, output 2, power, and	
	ground.	
Dielectric	Input / [Output 1, Output 2] / [Power,	
Strength	Ground]: 2000V AC for 1 minute	
	(Cutoff current: 0.5mA)	
	Power / Ground: 2000V AC for 1	
	minute (Cutoff current: 5mA)	
	Output 1 / Output 2: 500V AC for 1	
	minute (Cutoff current: 0.5mA)	
Surge Withstand	Tested as per ANSI/IEEE	
Capability	C37.90.1-1989.	
Operating	Ambient temperature: -5 to 55°C	
Environment	Humidity: 5 to 90% RH	
	(non-condensing)	
Storage	-10 to 60°C	
Temperature		

PHYSICAL

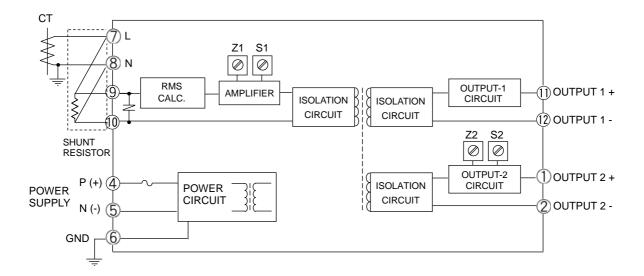
Installation	DIN rail mounting
Wiring	M3.5 screw terminal connection
	(with drop-out prevention screws)
	The supplied shunt resistor should be
	connected to the terminal block. (The
	two brackets of the resistor should be
	fixed to the terminals (7) and (8).)
Screwing Torque	0.8 to 1.0 [Nm] * Recommended
External	$W49.8 \times H102.0 \times D40.0mm$
Dimensions	(not including the shunt resistor)
Weight	Main unit: 140g max.
	Shunt resistor: 5g max.
·	

MATERIALS


•	
Housing	ABS resin (UL 94V-0)
Screw Terminal	Nickel-plated steel
Printed Circuit	Glass fabric epoxy resin
Board	(FR-4: UL 94V-0)
Anti-Humidity	HumiSeal® 1A27NS (Polyurethane)
Coating	

^{*} HumiSeal® is a registered trademark of Chase Corporation.

STANDARDS CONFORMITY


EC Directive	EMC Directive (2014/30/EU)
Conformity	EN61326-1: 2013
	Low Voltage Directive (2014/35/EU)
	IEC61010-1/EN61010-1: 2010
	Installation Category II
	Pollution Degree 2
	Maximum operating voltage 300V
	Reinforced insulation between
	[input/output/GND] and power.

TERMINAL ASSIGNMENT

1	+ OUTPUT 2	
2	- OUTPUT 2	
3	N.C.	
4	P (+) POWER	
(5)	N (-)	
6	GND	
7	L INPUT	
8	N INPUT	
9	(L) INPUT	
10	(N) INPUT	
11)	+ OUTPUT 1	
12	- OUTPUT 1	

BLOCK DIAGRAM

