

Product Specification Sheet

Model: MS3767

MS3700

Slim Plug-In Temperature/Pressure Compensator with Isolated Single Output

DESCRIPTION

The MS3767 is a slim, plug-in temperature/pressure compensator that compensates for variations in temperature, pressure, or differential pressure for accurate flow rate calculation and provides an isolated single output.

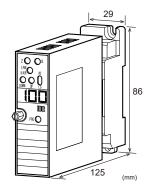
ORDERING CODE

MS3767 □ - □ - □ □
Model —
Equation —
A: Temperature/Pressure compensation
B : Temperature compensation
D : Temperature/Pressure compensation
(w/o square-root extraction of IN1)
E: Temperature compensation
(w/o square-root extraction of IN1)
F : Temperature/Pressure compensation
(w/o square-root extraction)
G : Temperature compensation
(w/o square-root extraction)
Power Supply —
A : 100 to 240V AC (50 to 60Hz)
D : 24V DC P : 100 to 240V DC
Input —

A : 4 to 20mA DC	3 : 0 to 1V DC
B : 2 to 10mA DC	4 : 0 to 10V DC
C : 1 to 5mA DC	5 : 0 to 5V DC
D : 0 to 20mA DC	6 : 1 to 5V DC
E : 4 to 20mA DC *1	4W : ±10V DC
H : 10 to 50mA DC	5W : ±5V DC
Z : Other DC current signal	0 : Other DC voltage signal

*1: Shunt resistor 50Ω

A: 4 to 20mA DC


Output -

D : 0 to 20mA DC	2 : 0 to 100mV DC
Z : Other DC current signal	3 : 0 to 1V DC
	4 : 0 to 10V DC
	5 : 0 to 5V DC
	6 : 1 to 5V DC
	3W : ±1V DC
	4W : ±10V DC
	5W : ±5V DC
	0 : Other DC voltage signal

1: 0 to 10mV DC

Options

No code: None /X: Special order

ORDERING INFORMATION

To place an order, please use the ordering code format as shown on the left, and also our Specification Order

(e.g.) MS3767A-A-66 (Specification Order Form)

* For details, refer to page 4.

Other Ordering Examples:

For an input code of "Z": MS3767A-A-ZA (Input: 8 to 20mA)

For an output code of "0": MS3767A-A-A0 (Output:2 to 5V)

SPECIFICATIONS

●POWER SECTION						
Power	100 to 240	V AC: 85 to	264V AC (47			
Requirements	to 63Hz)					
	24V DC: 2	24V DC±10%)			
	100 to 240	V DC: 85 to	264V DC			
Power Sensitivity	Better than ±0.1% of span for each					
	power supply range.					
Power Line Fuse	160mA fus	se is installed	(standard).			
Power Consumption						
Power 10	100-240V AC 24V DC 100-240V DC					
5	5.5VA max 1.6W max 6.0W max					

	JVAIIIAA	1.0 W IIIax	0.0 W IIIax					
●INPUT SECTION								
Input Resistance	Input Resistance							
Voltage Input (DC)	With or with	out power: 1	$M\Omega$ min.					
Current Input (DC)	4 to 20mA (std.) 2509	Ω					
	2 to 10mA	2509	Ω					
	1 to 5mA	1009	Ω					
	0 to 20mA	2509	Ω					
	10 to 50mA	10Ω	1					
Allowable Input Vol	tage							
Voltage Input Model	30V DC max., continuous (Standard							
	for a span up	to 10V)						
Current Input Model	40mA DC m	nax., continu	ous (Standard					
	for 4 to 20m	(A)						
Input Range	0 to 120%							
	Note: Any input signal under 0% is							
	assumed to be 0%, while any							
	input signal over 120% is							
assumed to be 120%.								

^{*} For non-standard options, ask MTT for availability.

Ranges Available		
	Current Signal	Voltage Signal
Input Range (DC)	-100 to 100mA	-300 to 300V
Input Span (DC)	$100 \mu A^{*1}$ to $200 mA$	200mV*2 to 600V
Input Bias	-100 to 100%	-100 to 100%

Note: For any input range including negative input signals, the input spans for current and voltage signals range from ${}^{(*1)}200\mu A$ to 200mA and ${}^{(*2)}400mV$ to 600V, respectively.

Input Spec. Ex. 1: For 3 to 8V input, the input span is 5V and the bias +60%.

Input Spec. Ex. 2: For -5 to 0V input, the input span is 5V and the bias -100%.

OUTPUT SECTION Allowable Output Load Voltage Output (DC) 1V span and up 2mA max. $10k\Omega$ min. 10 mV100mV $100k\Omega$ min. 4 to 20mA Current Output (DC) 750Ω max. Zero Adjustment Approx. ±5% of span. (Adjustable by the front-accessible trimmer.) Span Adjustment Approx. ±5% of span. (Adjustable by the front-accessible trimmer.) Accuracy for $\pm 0.5\%$ of span (set value) **Setting Dropout** Better than -0.4% of span (hysteresis) Range Accuracy for Better than $\pm 0.5\%$ of span. **Output Clamping** Level Ranges Available

Current Signal Voltage Signal 0 to 20mA-10 to 10V Output Range (DC) 4 to 20mA 10mV to 20V Output Span (DC) **Output Bias** 0 to 100% -100 to 100%

* For current output signals, the accuracy of any current output smaller than 0.1mA is not guaranteed.

Output Spec Ex. 1: For 4 to 20mA output, the output span is 16mA and the bias +25%.

Output Spec Ex. 2: For -1 to 4V output, the output span is 5V and the bias -20%.

PERFORMANCE

Equations

Temperature/Pressure Compensation:

$$X_0 = \sqrt{\frac{T_B + 273.15}{((T_F - T_z) \cdot X_2 + T_z) + 273.15}} \cdot \frac{((P_F - P_z) \cdot X_3 + P_z) + 101.32}{P_B + 101.32} \cdot X_1}$$

Temperature/Pressure Compensation (without square-root extraction of IN1):

$$X_0 = \sqrt{\frac{T_B + 273.15}{((T_F - T_Z) \cdot X_2 + T_Z) + 273.15}} \cdot \sqrt{\frac{((P_F - P_Z) \cdot X_3 + P_Z) + 101.32}{P_B + 101.32}} \cdot X$$

Temperature/Pressure Compensation (without square-root extraction):

$$X_0 = \frac{T_B + 273.15}{((T_F - T_Z) \cdot X_2 + T_Z) + 273.15} \cdot \frac{((P_F - P_Z) \cdot X_3 + P_Z) + 101.32}{P_B + 101.32} \cdot X_2$$

Temperature Compensation:

$$X_0 = \sqrt{\frac{T_B + 273.15}{((T_F - T_Z) \cdot X_2 + T_Z) + 273.15}} \cdot X_1$$

Temperature Compensation (without square-root extraction

$$X_0 = \sqrt{\frac{T_B + 273.15}{((T_F - T_Z) \cdot X_2 + T_Z) + 273.15}} \cdot X_1$$

Temperature Compensation (without square-root extraction):

$$X_0 = \frac{T_B + 273.15}{((T_F - T_Z) \cdot X_2 + T_Z) + 273.15} \cdot X_1$$

X₀: Calculated output (%)

X₁: Differential pressure input (IN1) (%)

X₂: Temperature input (IN2) (%)

X₃: Pressure input (IN3) (%)

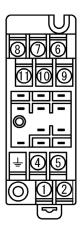
T_B: Reference temperature for compensation (°C)

Tz: Temperature input 0% (°C)

T_F: Temperature input 100% (°C)

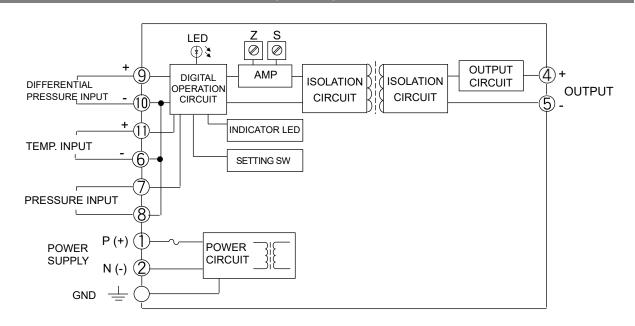
P_B: Reference pressure for compensation (kPa)

Pz: Pressure input 0% (kPa)

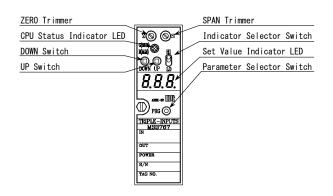

P_F: Pressure input 100% (kPa)

P _F : Pressure input 10	0% (kPa)
Accuracy Rating	Input accuracy: ±0.1% of span
	Output accuracy: ±0.2% of span
Temperature	Better than ±0.2% of span per 10°C
Effect	change in ambient.
Response Time	1s max. (0 to 90%) with a step input at 100%.
CMRR	100dB min. (500V AC, 50/60Hz)
Isolation	4-way isolation between input,
	output, power, and ground.
Insulation	100MΩ min. (@ 500V DC) between
Resistance	input, output, power, and ground.
Dielectric	Input / Output / [Power, Ground]:
Strength	2000V AC for 1 minute (Cutoff
3	current: 0.5mA)
	Power / Ground: 2000V AC for 1
	minute (Cutoff current: 5mA)
Surge Withstand	Tested as per ANSI/IEEE
Capability	C37.90.1-1989
Operating	Ambient temperature: -5 to 55°C
Environment	Humidity: 5 to 90% RH
	(non-condensing)
Storage	-10 to 60°C
Temperature	
●PHYSICAL	
Installation	Wall/DIN rail mounting
Wiring	M3.5 screw terminal connection
	(with a power terminal block cover &
	drop-proof screws)
Screwing Torque	0.8 to 1.0 [Nm] * Recommended
External	$W29 \times H86 \times D125$ mm
Dimensions	(including the mounting screw and
	socket)
Weight	Main unit: 130g max.
	Socket: 80g max.
• MATERIALS	
Housing	ABS resin (UL 94V-0)
Terminal Block	PBT resin (UL 94V-0)
Terminal Block	PC resin (UL 94V-2)
Cover	,
DIN Rail Stopper	PP resin (UL 94HB)
Screw Terminal	Nickel-plated steel
Contacts Material and Finish	Brass with 0.2µm gold plating

Printed Circuit	Glass fabric epoxy resin
Board	(FR-4: UL 94V-0)
Conformal	HumiSeal® 1A27NS (Polyurethane)
Coating	,


^{*} HumiSeal® is a registered trademark of Chase Corporation.

TERMINAL ASSIGNMENT



1	P (+)				
2	N (-)				
<u></u>	GND				
4	+ OUTPUT				
5	- OUTPUT				
6	- INPUT 2 (Temp. input)				
7	+ INPUT 3 (Pressure input)				
8	- INPUT 3 (Pressure input)				
9	+ INPUT 1 (Differential pressure input)				
10	- INPUT 1 (Differential pressure input)				
11	+ INPUT 2 (Temp. input)				

BLOCK DIAGRAM

FRONT VIEW

Reference temperature for compensation (Example: 100.00°C)

* Range available: -250.00 to 999.99°C; Default: 0.00°C

Reference pressure for compensation (Example: 101.32kPa)

* Range available: 0 to 9999.99kPa; Default: 0.00kPa

Input temperature range for compensation (Example: 0 to 250°C)

* Range available: -250.00 to 999.99°C, with a minimum span of 100.00°C; Default: 0 to 100.00°C

Input pressure range for compensation (Example: 0 to 1000.00kPa)

* Range available: 0 to 9999.99kPa, with a minimum span of 10.00kPa; Default: 0 to 101.32kPa

Dropout level (Example: 5%)

* Range available: 5 to 15%; Default: 10% Note: Set values have a hysteresis of approx. -0.4%.

Output clamping level (Example: 2%)

* Range available: 0 to 10% (Below dropout setting); Default: 0%

ADDITIONAL ORDERING INFORMATION

Temperature/Pressure Compensation:

$$X_0 = \sqrt{\frac{T_B + 273.15}{((T_P - T_Z) \cdot X_2 + T_Z) + 273.15} \cdot \frac{((P_P - P_Z) \cdot X_3 + P_Z) + 101.32}{P_B + 101.32} \cdot X_1}$$

Temperature/Pressure Compensation (without square-root extraction of IN1):

$$X_0 \!\!=\! \sqrt{\frac{T_B \!\!+\! 273.15}{((T_F \!-\! T_Z) \!\!+\! X_2 \!\!+\! T_Z) \!\!+\! 273.15}} \cdot \frac{((P_F \!\!-\! P_Z) \!\!+\! X_3 \!\!+\! P_Z) \!\!+\! 101.32}{P_B \!\!+\! 101.32}$$

Temperature/Pressure Compensation (without square-root extraction):

X₀: Calculated output (%)

X₁: Differential pressure input (IN1) (%)

X₂: Temperature input (IN2) (%)

X₃: Pressure input (IN3) (%)

T_B: Reference temperature for compensation (°C)

T_Z: Temperature input 0% (°C)

T_F: Temperature input 100% (°C)

P_B: Reference pressure for compensation (kPa)

Pz: Pressure input 0% (kPa)

P_F: Pressure input 100% (kPa)

	Item	User Specified	Unit	Example	Range Available	Default
1	Reference temperature for compensation		°C	100.00°C	-250.00 to 999.99°C	0.00°C
2	Reference pressure for compensation		kPa	101.32kPa	0 to 9999.99kPa	0.00kPa
3	Input temperature range for compensation		°C	0 to 250°C	-250.00 to 999.99°C	0 to 100.00°C
4	Input pressure range for compensation		kPa	0 to 1000.00kPa	0 to 9999.99kPa	0 to 101.32kPa
5	Dropout level		%	5%	5 to 15%	10%
6	Output clamping level		%	2%	0 to 10%	0%

Temperature Compensation:

$$\chi_0 = \sqrt{\frac{T_B + 273.15}{((T_F - T_Z) \cdot X_2 + T_Z) + 273.15} \cdot \chi_1}$$

Temperature Compensation (without square-root extraction of IN1):

$$\chi_0 = \sqrt{\frac{T_B + 273.15}{((T_F - T_Z) \cdot X_2 + T_Z) + 273.15}} \cdot \chi_1$$

Temperature Compensation (without square-root extraction):

$$X_0 = \frac{T_B + 273.15}{((T_F - T_Z) \cdot X_2 + T_Z) + 273.15} \cdot X_1$$

X₀: Calculated output (%)

X₁: Differential pressure input (IN1) (%)

X₂: Temperature input (IN2) (%)

T_B: Reference temperature for compensation (°C)

Tz: Temperature input 0% (°C) T_F: Temperature input 100% (°C)

	Item	User Specified	Unit	Example	Range Available	Default
1	Reference temperature for compensation		°C	100.00°C	-250.00 to 999.99°C	0.00°C
2	Input temperature range for compensation		°C	0 to 250°C	-250.00 to 999.99°C	0 to 100.00°C
3	Dropout level		%	5%	5 to 15%	10%
4	Output clamping level		%	2%	0 to 10%	0%

LED STATUS INDICATORS

•INDICATOR PATTERNS

No.	Event	Set Value Indicator (7-segment LED)	CPU Status Indicator LED	Output	Recovery Operation
1	Power ON or start of constant setting	Blinks 3 times (1 s ON - 0.5 s OFF cycle), then displays an equation code for 1 second.	Green LED turns ON for 1 second, and then red LED turns ON for 0.5 second. This cycle is repeated 3 times, followed by green LED lighting for 1 second.	Normal	-
2	Normal operation	OFF	Green LED is ON.	Normal	_
3	Dropout operation	OFF	Red and green LEDs alternately blink at 1 second intervals.	Clamp value	-
4	Constant setting	Constant	Red LED blinks at 1 second intervals when the constant is positive; Green LED blinks at 1 second intervals when it is negative.	Value before setting	End of setting
5	DAC error	Error code: 1	Red LED is ON.	Typically 0%, but may vary.	None
6	Internal parameter error	Error code: 2	Red LED is ON.	Typically 0%, but may vary.	None
7	Equation parameter error	Error code: 4	Red LED is ON.	Typically 0%, but may vary.	Reconfiguration
8	Temperature constant parameter error	Error code: 8	Red LED is ON.	Typically 0%, but may vary.	Reconfiguration
9	Pressure constant parameter error	Error code: 16	Red LED is ON.	Typically 0%, but may vary.	Reconfiguration
10	Dropout/clamping parameter error	Error code: 32	Red LED is ON.	Typically 0%, but may vary.	Reconfiguration
11	System error	Not defined.	Red LED is ON; Green LED is not defined.	Typically 0%, but may vary.	None

No. 1: When the Set Value Indicator is ON, a 3-digit number "888" with dots is displayed.

No. 5 - 10: If multiple errors occur, the sum of error code numbers is displayed.

No. 11: The red LED sometimes fails to light up.