

Product Specification Sheet

Model: MS3705HB

MS3700

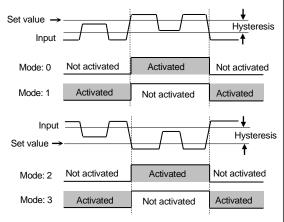
Slim Plug-In Digital Alarm Setter with Isolated Dual Output (High Accuracy Model)

DESCRIPTION

The MS3705HB is a slim, plug-in digital alarm setter (with high accuracy) that compares the levels of DC current or voltage signals with two set-points (upper and lower limits) and outputs two independent isolated relay contact closure signals.

ORDERING CODE

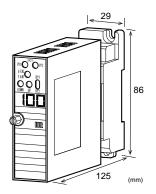
MS3	3705HB - 🖵 - 🖵 🖵 🖵 _
Model —	
Power Supply A: 100 to 240V AC (50 to 60 D: 24V DC P:	0Hz) 100 to 240V DC
Input — A: 4 to 20mA DC	3: 0 to 1V DC
B : 2 to 10mA DC C : 1 to 5mA DC	4: 0 to 10V DC 5: 0 to 5V DC
D : 0 to 20mA DC E : 4 to 20mA DC*1	6 : 1 to 5V DC 4W : ±10V DC
H: 10 to 50mA DC Z: Other DC current signal	5W : ±5V DC 0 : Other DC voltage signal
*1: Shunt resistor 50Ω	
Relay Activation Modes	s for Output 1&2 —


Mode of operation for each channel can be selected from the following:

y activated
y not activated

1:	Input > Set value	Relay not activated
	Input < (Set value – Hysteresis)	Relay activated

2 :	Input > (Set value + Hysteresis)	Relay not activated
	Input < Set value	Relay activated
	Input < Set value	Relay activated


3 :	Input > (Set value + Hysteresis)	Relay activated
	Input < Set value	Relay not activated

Note: The mode of operation can be changed by the switch on the front panel.

Options

No code: None /X: Special order

ORDERING INFORMATION

To place an order, please use the ordering code format as shown on the left.

(e.g.) MS3705HB-A-602

* The factory default settings are as follows:

Output 1:

Relay activation mode: 0 Trip point: 50% Hysteresis: 1.0%

Output 2:

Relay activation mode: 2 Trip point: 50% Hysteresis: 1.0%

See also the default settings on page 5.

SPECIFICATIONS

POWER	SEC1	ION		
Power		100 to 240V AC: 85 to 264V AC (47		
Requiremen	ts	to 63Hz)		
		24V DC: 2	24V DC±10%	Ò
		100 to 240	V DC: 85 to	264V DC
Power Sens	itivity	Better than ±0.1% of span for each		
		power sup	ply range.	
Power Line	Fuse	160mA fuse is installed (standard).		
Power Cons	umptic	n		
Power	10	0-240V AC	24V DC	100-240V DC
	7.	0VA max	2.2W max	8.4W max

●INPUT SECTIO	N	
Input Resistance		
Voltage Input (DC)	With or without po	wer: $1M\Omega$ min.
Current Input (DC)	4 to 20mA (std.)	250Ω
	2 to 10mA	250Ω
	1 to 5mA	100Ω
	0 to 20mA	250Ω
	10 to 50mA	10Ω
Allowable Input Vol	tage	
Voltage Input Model	30V DC max., conti	nuous. (Standard
	for a span up to 10V)
Current Input Model	40mA DC max., con	itinuous.
	(Standard for 4 to 20)mV)

^{*} For non-standard options, ask MTT for availability.

Ranges Available		
	Current Signal	Voltage Signal
Input Range (DC)	-100 to 100mA	-300 to 300V
Input Span (DC)	100μA*1 to 200mA	200mV*2 to 600V
Input Bias	-100 to 100%	-100 to 100%
Note: For any input r	ange including negat	ive input signals,
the input spans	for current and volta	age signals range
from (*1)200µ A	to 200mA and (*2)40	00mV to 600V,
respectively.		

Input Spec. Ex.1: For 3 to 8V input, the input span is 5V and the bias +60%.

Input Spec. Ex. 2: For -5 to 0V input, the input span is 5Vand the bias -100%.

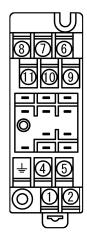
OUTPUT SECTION

90011 01 3EC	11014	
Output Signal	Two independent form C relay	
	contact closure signals	
Trip Point	_	
Setting	Through the front-accessible rotary switch.	
Range	0 to 105% of span (in steps of 0.1%;	
	in steps of 1% for the range over 100%).	
Accuracy	Better than $\pm 0.1\%$ of span.	
Hysteresis	$0.5 \text{ to } 50.0\% \pm 0.1\% \text{ of span.}$	
	(Adjustable by the front-accessible	
	switch.)	
Note: The upper and l	ower hysteresis limits are respectively	
110% and -10%	of span.	
Relay Status	The red LED light up when the relay is	
Indicator LED	activated.	
Relay Activation	COM and NC are closed for each	
without Power	output.	
Relay Start-up	Standard: The relay gets ready for	
Limitation	action about 2 seconds after	
	power-up.	
Note: Non-standard	limitation is also available upon request	
when ordering	It should be between 1 and 60 seconds.	

PERFORMANCE

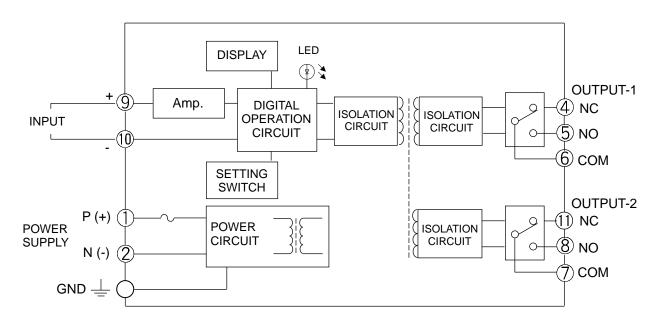
Better than ±0.15% of span per 10°C
change in ambient.
150ms max. (0 to 90%) with a step
input at 100%.
Red LED, digit height 8.0mm,
3 digits.
Isolation between input, output 1,
output 2, power, and ground.
$100M\Omega$ min. (@ 500V DC) between
input, output 1, output 2, power, and
ground.
Input / Output 1 / Output 2 / [Power,
Ground]: 2000V AC for 1 minute
(Cutoff current: 0.5mA)
Power / Ground: 2000V AC for 1
minute (Cutoff current: 5mA)
5A 125V AC, 5A 30V DC
250V AC, 30V DC
250V AC, 30V DC
250V AC, 30V DC 5A (NO) / 3A (NC)

Electrical Life	5A, 250V AC (NO): 50 × 10 ³ cycles (Frequency: 1,800 cycles/h) 5A, 30V DC: 100 × 10 ³ cycles
Mechanical Life	(Frequency: 1,800 cycles/h) 5×10^6 cycles (Frequency: 18,000
	cycles/h)
Surge Withstand	Tested as per ANSI/IEEE
Capability	C37.90.1-1989.
Operating	Ambient temperature: -5 to 55°C
Environment	Humidity: 5 to 90% RH
	(non-condensing)
Storage	-10 to 60°C
Temperature	

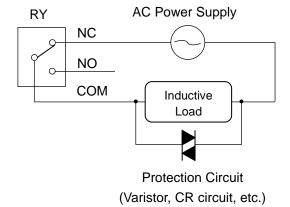

PHYSICAL

Installation	Wall/DIN rail mounting
Wiring	M3.5 screw terminal connection
	(with a power terminal block cover &
	drop-proof screws)
Screwing Torque	0.8 to 1.0 [Nm] * Recommended
External	$W29 \times H86 \times D125mm$
Dimensions	(including the mounting screw and
	socket)
Weight	Main unit: 130g max.
	Socket: 80g max.

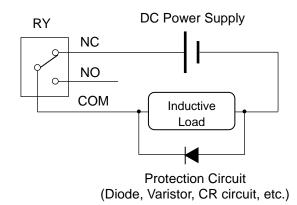
• MATERIALS	
Housing	ABS resin (UL 94V-0)
Terminal Block	PBT resin (UL 94V-0)
Terminal Block	PC resin (UL 94V-2)
Cover	
DIN Rail Stopper	PP resin (UL 94HB)
Screw Terminal	Nickel-plated steel
Contacts Material	Brass with 0.2µm gold plating
and Finish	
Printed Circuit	Glass fabric epoxy resin
Board	(FR-4: UL 94V-0)
Conformal	HumiSeal® 1A27NS (Polyurethane)
Coating	· · ·

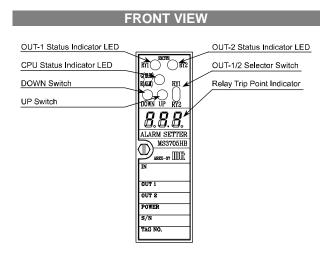

^{*} HumiSeal® is a registered trademark of Chase Corporation.

TERMINAL ASSIGNMENT


1	P (+) POWER
2	N (-)
÷	GND
4	NC OUT 1
5	NO OUT 1
6	COM OUT 1
7	COM OUT 2
8	NO OUT 2
9	+ INPUT
10	- INPUT
11)	NC OUT 2

BLOCK DIAGRAM




When an inductive load, such as an electric motor, is connected to the output, a relay contact protection circuit must be connected across the load.

Example of AC Power Connection:

Example of DC Power Connection:

SETTING

TRIP POINT SETTING

Setting for OUT-1

When the OUT-1/2 Selector Switch is set to the RY1 position with the power on, the Relay Trip Point Indicator shows the current trip point value for OUT-1. This value can be changed to a desired value by pressing the UP/DOWN Switch.

Setting for OUT-2

When the OUT-1/2 Selector Switch is set to the RY2 position with the power on, the Relay Trip Point Indicator shows the current trip point value for OUT-2. This value can be changed to a desired value by pressing the UP/DOWN Switch.

HYSTERESIS / MODE SETTING

The hysteresis and relay activation mode can be changed based on the conditions indicated below.

Innut	Output		
Input	Mode 0	Mode 1	
> Set value	Relay	Relay not	
≥ Set value	activated	activated	
≤ (Set value – Hysteresis)	Relay not	Relay	
≤ (Set value – Hystelesis)	activated activated Relay not Relay activated activated	activated	
(Set value – Hysteresis) to Set value	Unchanged	Unchanged	

Input	Output	
Input	Mode 2	Mode 3
≥ (Set value + Hysteresis)	Relay not activated	Relay activated
≤ Set value	Relay activated	Relay not activated
Set value to (Set value + Hysteresis)	Unchanged	Unchanged

Checking and Setting the Hysteresis

When the power is turned on with the UP Switch held down, the CPU Status Indicator LED blinks green and the Relay Trip Point Indicator shows a 3-digit hysteresis value for the output selected with the OUT-1/2 Selector Switch. This hysteresis value can be changed to a desired value by pressing the UP/DOWN Switch.

Checking and Setting the Relay Activation Mode When the power is turned on with the DOWN Switch held down, the CPU Status Indicator LED blinks green and the Relay Trip Point Indicator shows a single-digit relay activation mode for the output selected with the OUT-1/2 Selector Switch. The mode can be toggled between 1 and 0 using either the UP or DOWN Switch (1 for the mode "H", 0 for the mode "L").

After making any setting change, the OUT-1/2 Selector Switch must be set to the opposite position to where it is located. This switching procedure enables the instrument to save the updated setting information.

To resume normal operation, the unit must be powered off and on.

Indicator

The Relay Trip Point Indicator goes OFF if no switch is operated for one minute, while the CPU Status Indicator LED keeps illuminating green. This LED turns red and blinks if any CPU error is detected.

UP/DOWN Setting Switch

The switch is of a push button type. Pressing and holding the switch increases the speed at which the value changes.

Factory Default Settings

If not specified, the relay operation will be set to the factory defaults as shown in the table below.

Output	Mode	Trip Point	Hysteresis
OUT-1	0	50%	1.0%
OUT-2	2.	50%	1.0%

LED STATUS INDICATOR

INDICATOR PATTERNS

No.	Event	Relay Trip Point Indicator (7-segment LED)	CPU Status Indicator	Relay	Recovery Operation
1	Power ON or switch operation	Blinks 3 times (1 s ON - 0.5 s OFF cycle).	Green LED turns ON for 1 second, and then red LED turns ON for 0.5 second. This cycle is repeated 3 times.	Normal operation	_
2	Normal operation	OFF	Green LED is ON.	Normal operation	_
3	Trip Point setting	Set value	Green LED is ON.	Normal operation	_
4	Hysteresis / Mode setting	Set value	Green LED blinks at 1 second intervals.	Not activated.	_
5	Data error in Relay Trip Point setting	02 (Error code)	Red LED blinks at 1 second intervals.	Not activated.	Reconfig- uration
6	Data error in Relay Start-up Limitation	04 (Error code)	Red LED blinks at 1 second intervals.	Not activated.	Reconfig- uration
7	Data error of a compensated value	08 (Error code)	Red LED blinks at 1 second intervals.	Not activated.	None
8	Data error in Hysteresis Setting	16 (Error code)	Red LED blinks at 1 second intervals.	Not activated.	Reconfig- uration
9	Data error in Relay Activation Mode Setting	32 (Error code)	Red LED blinks at 1 second intervals.	Not activated.	Reconfig- uration
10	System error	Not defined.	Red LED is ON; Green LED is not defined.	Not activated.	None

Notes

No. 1: When the Relay Trip Point Indicator is ON, a 3-digit number "888" with dots is displayed.

No. 5 - 9: Only the last 2 digits are displayed in the event of an error.

No. 10: The red LED sometimes fails to light up. The relay operation may sometimes be unstable.

DEFAULT SETTINGS

If you specify trip points and hysteresis at the time you place an order, the product will be set to your specified values before shipment.

The following is an example of how to specify these parameters.

(Example)

Trip Point for Output 1: 20% Hysteresis for Output 1: 2% Trip Point for Output 2: 30% Hysteresis for Output 2: 4%

If nothing is specified, the product will be set to the following default values:

Trip Point for Output 1: 50.0% Hysteresis for Output 1: 1.0% Trip Point for Output 2: 50.0% Hysteresis for Output 2: 1.0%

The relay start-up limitation (standard: 2 s) is available from 1 to 60 s as a special order.

The following is an example of how to specify this parameter.

(Example)

Relay start-up limitation: 10 s

Note that you cannot set the relay start-up limitation.